一些有关TCP通信量的研究如[Caceres et al. 1991]发现,如果按照分组数量计算,约有一半的TCP报文段包含成块数据(如FTP、电子邮件和Usenet新闻),另一半则包含交互数据(如Telnet和Rlogin)。如果按字节计算,则成块数据与交互数据的比例约为90%和10%。这是因为成块数据的报文段基本上都是满长度(full-sized)的(通常为512字节的用户数据),而交互数据则小得多(上述研究表明Telnet和Rlogin分组中通常约90%左右的用户数据小于10个字节)。
很明显,TCP需要同时处理这两类数据,但使用的处理算法则有所不同。
交互式输入
首先来观察在一个Rlogin连接上键入一个交互命令时所产生的数据流。许多TCP/IP的初学者很吃惊地发现通常每一个交互按键都会产生一个数据分组,也就是说,每次从客户传到服务器的是一个字节的按键(而不是每次一行)。而且,Rlogin需要远程系统(服务器)回显我们(客户)键入的字符。这样就会产生4个报文段:(1)来自客户的交互按键;(2)来自服务器的按键确认;(3)来自服务器的按键回显;(4)来自客户的按键回显确认。
然而,我们一般可以将报文段2和3进行合并—按键确认与按键回显一起发送。
经受时延的确认
通常TCP在接收到数据时并不立即发送ACK;相反,它推迟发送,以便将ACK与需要沿该方向发送的数据一起发送(有时称这种现象为数据捎带ACK)。绝大多数实现采用的时延为200 ms,也就是说,TCP将以最大200 ms的时延等待是否有数据一起发送。
Nagle算法
该算法要求一个TCP连接上最多只能有一个未被确认的未完成的小分组,在该分组的确认到达之前不能发送其他的小分组。相反,TCP收集这些少量的分组,并在确认到来时以一个分组的方式发出去。该算法的优越之处在于它是自适应的:确认到达得越快,数据也就发送得越快。而在希望减少微小分组数目的低速广域网上,则会发送更少的分组。
关闭Nagle算法
有时我们也需要关闭Nagle算法。一个典型的例子是X窗口系统服务器:小消息(鼠标移动)必须无时延地发送,以便为进行某种操作的交互用户提供实时的反馈。
插口API用户可以使用TCP_NODELAY选项来关闭Nagle算法。
Host Requirements RFC声明TCP必须实现Nagle算法,但必须为应用提供一种方法来关闭该算法在某个连接上执行。
小结
交互数据总是以小于最大报文段长度的分组发送。在Rlogin中通常只有一个字节从客户发送到服务器。Telnet允许一次发送一行输入数据,但是目前大多数实现仍然发送一个字节。
对于这些小的报文段,接收方使用经受时延的确认方法来判断确认是否可被推迟发送,以便与回送数据一起发送。这样通常会减少报文段的数目,尤其是对于需要回显用户输入字符的Rlogin会话。
在较慢的广域网环境中,通常使用Nagle算法来减少这些小报文段的数目。这个算法限制发送者任何时候只能有一个发送的小报文段未被确认。